Question Number	Correct Answer	Reject	Mark
1(a)(i)	As a (co-)solvent for both aqueous silver nitrate and bromoalkane		(1)
	OR		
	As a (co-)solvent for polar and non-polar molecules		
	OR		
	To dissolve the halogenoalkane (as it is not water soluble)		
	OR		
	To allow the reagents/reactants to mix/dissolve		

Question Number	Correct Answer	Reject	Mark
1(a)(ii)	$C_4H_9Br + H_2O \rightarrow C_4H_9OH + HBr$ OR		(1)
	$C_4H_9Br + H_2O \rightarrow C_4H_9OH + H^+ + Br^-$ Ignore state symbols even if incorrect		

Question Number	Correct Answer		Reject	Mark
1(a)(iii)	Cream ALLOW		Just "yellow" Just "white"	(2)
	Pale yellow/off-white	(1)		
	$Ag^+(aq) + Br^-(aq) \rightarrow AgBr(s)$	(1)		

Question Number	Correct Answer	Reject	Mark
1(a)(iv)	trated ammonia (solution) / Concentrated NH ₃ ((aq))		(1)
IGNORE References	ALLOW 'c' or 'conc' for concentrated to "excess"		

Question Number	Correct Answer	Reject	Mark
1 (a)(v)	С, В, А		1
	ΝΟΤΕ		
	The letters must be in this order		

*1(a)(vi) Any two from (2) • Tertiary is the fastest / primary is the slowest If states that tertiary bromoalkane dissolves fastest • The C-Br bond is weakest in 2-methylbromopropane / in the tertiary (compound) If states that tertiary bromoalkane dissolves fastest ALLOW here: The weaker the C-Br bond, the faster the hydrolysis • (This is because the) methyl groups donate electrons OR Methyl groups are electron releasing OR (positive) inductive effect of methyl groups IGNORE Any resultant effect on the polarity of the C-Br bond, even if incorrect • Tertiary carbocation OR intermediate formed by tertiary is (more) stable ALLOW branched for tertiary in all points IGNORE Any references to steric hindrance Any references to Sh1 and/or Sh2

Question Number	Correct Answer	Reject	Mark
1(b)(i)	COTTON WOOL A SOAKED IN HEAT MINTURE		(2)
	M1: All three of the following points		
	 (Cotton) wool / mineral wool / ceramic fibre (soaked in reactant) 		
	in a reasonably horizontal test tube		
	 heating (shown anywhere under horizontal tube) 	1)	
		.,	
	M2: Collection of gas over water / in a gas syringe	e 1)	
	Ignore Bunsen valve		
	Mark these scoring points independently		

Question Number	Correct Answer	Reject	Mark
1(b)(ii)	But-1-ene	Butene	(2)
	ALLOW	Butan-1-ene	
	1-butene (1)	Butanene	
	(1)		
	(1)		

Question Number	Correct Answer	Reject	Mark
1(c)(i)	(Type) substitution (1)	Elimination	(2)
	(Mechanism) nucleophilic (1)	Electrophilic / (free) radical	
	Allow words in either order		
	Just " $S_N 2$ " scores one mark	S _N 1	

Question Number	Correct Answer	Reject	Mark
1 (c)(ii)	Butylamine/1-aminobutane/1-butylamine		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i)	Ethanol dissolves silver nitrate / silver ions and halogenoalkanes OR Ethanol (molecule) is polar and non-polar (solvent) OR Ethanol dissolves ionic and covalent compounds ALLOW Ethanol dissolves ionic and non- polar compounds Ethanol dissolves both types (of compound) So that the reactants can mix 'miscible' for 'dissolves' IGNORE	Ethanol is non- polar Just 'ethanol dissolves halogenoalkanes' Just 'water does not dissolve halogenoalkanes' Just 'they dissolve in ethanol'	1
	Any references to rate		

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	To allow the temperature (of all the liquids) to equilibrate / to reach 50°C OR So that all the substances are at the same temperature ALLOW So that the temperature is constant		1

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	Silver bromide IGNORE Formula even if incorrect(1) $Ag^+ + Br^- \rightarrow AgBr$ (1)TE on incorrect silver halideALLOW Ionic equations with uncancelled ions 	Non-ionic equations	2
	state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	Order: iodo, bromo, chloro ALLOW AgI, AgBr, AgCl OR I, Br, Cl OR Iodine, bromine, chlorine (1)	I ₂ , Br ₂ , Cl ₂	2
	C—I is the weakest bond OR I ⁻ is best leaving group ALLOW (if MP1 awarded) Rate depends on the strength of the C—X bond (1)	Rate depends on the reactivity of X / X ⁻	
	IGNORE Explanations of the bond strengths, even if incorrect. References to bond length and atomic radius/size ALLOW Reverse argument for MP2		

Question Number	Acceptable Answers		Reject	Mark
2 (b)(i)	nucleophilic substitution Stand alone marks	(1) (1)		2
	S _N 2 alone scores one mark		S _N 1	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Some comparison is required.		1
	Hydroxide ion /OH [−] is a stronger nucleophile (than water)	Use of NaOH/OH for OH [−]	
	ALLOW OH ⁻ is a better electron pair donor (than water) Concentration of hydroxide ion / OH ⁻ is higher OR Hydroxide ion / OH ⁻ is charged More hydroxide ion / OH ⁻ in NaOH (than water)	Just 'NaOH/alkali forms OH [−] more readily'	
	IGNORE OH ⁻ is more basic / alkaline Alkali is a stronger nucleophile OH ⁻ is more reactive		
	ALLOW Reverse argument		

Question	Acceptable Answers	Reject	Mark
Number 2	Populico omission of charge on hydrovide ion		3
2 (b)(iii)	Penalise omission of charge on hydroxide ion once only (in MP2)		3
	First mark		
	HO^{-} H_2C Br C_3H_7		
	\longrightarrow $CH_2 - C_3H_7 + Br^-$ HO		
	Both curly arrows First curly arrow from any part of the hydroxide ion (or the charge) to the carbon atom Second curly arrow from the C—Br bond to the bromine atom or just beyond (1)		
	Second mark		
	Lone pair on oxygen of OH^{-} {HO: } (1)	OH with no / partial	
	Third mark	charge	
	Partial charge on C—Br bond { C^{δ_+} —Br ^{δ} } (1)	C⁺—Br [¯]	
	ALLOW Correct S_N 1 mechanism for full marks		
	Curly arrow from hydroxide group from any part of the group including the charge.		
	IGNORE		
	transition state (even if incorrect) products (even if incorrect)		

Question Number	Acceptable Answers	Reject	Mark
2(b)(iv)	PCI5: misty /steamy /white fumes/gasIGNORETests on product (e.g. turns bluelitmus red)(1)K2Cr2O7: orange solution turns greenALLOWOrange to blue(1)	smoke Just 'fumes'/ 'effervescence'	3
	$K_2Cr_2O_7$ preferred because PCI ₅ reacts with water (as well as alcohols) ALLOW $K_2Cr_2O_7$ preferred because PCI ₅ reacts with alkali / OH ⁻ /OH (1) IGNORE References to primary, secondary and tertiary alcohols	PCl₅ reacts with carboxylic acids	

Question Number	Acceptable Answers			Reject	Mark
2 (c)	Skeletal formula	Classification			3
	Br	Primary/1°		Just the classificat ions	
	Br	Secondary/2°			
	Br	Tertiary/3°			
	Look at the structura three structures corr two structures correc	ect scores 2 ma			
	If all three structures then all three classif				
	Penalise displayed, p structural formulae o IGNORE Bond angles and nam	once only	ed or		

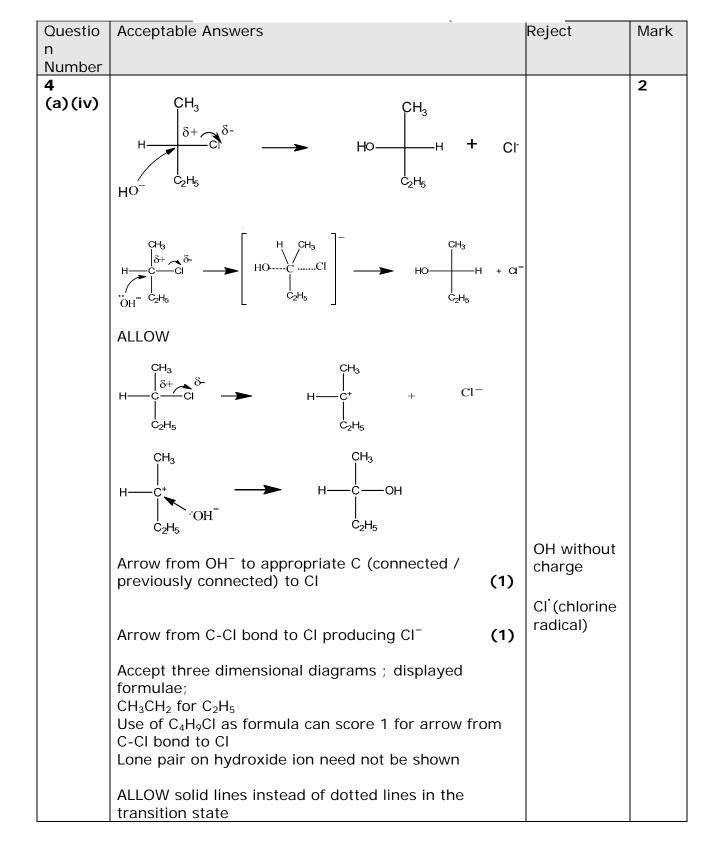
Question Number	Acceptable Answers	Reject	Mark
3 (a)	UV light/ ultraviolet light/ (sun) light / UV radiation IGNORE References to heat and or pressure.		1

Question Number	Acceptable Answers	Reject	Mark
3 (b)	Species/ particle with unpaired electron Allow atom	Single electron	1

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	CI-CI bond is weaker than a C-H bond / breaks more easily than a C-H bond OR Reverse argument		1

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	$CHCI_3 + \bullet CI \rightarrow \bullet CCI_3 + HCI$ (1)		2
	• $CCI_3 + CI_2 \rightarrow CCI_4 + •CI$ (1) Max (1) if 2 equations based on methane.		

Question Number	Acceptable Answers	Reject	Mark
3(c)(iii)	$\bullet CCI_3 + \bullet CI \rightarrow CCI_4$		1


Question Number	Acceptable Answers	Reject	Mark
3(d)	100% as only one product / 100% as no by product(s) / 100% as no waste product (formed)	Just "atom economy is high(er)" / no mention of 100%	1

Total = 7 marks

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	Alcohol /ethanol (as solvent for NaOH)	Any other reagents	1
	IGNORE heat / pressure		

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	Elimination		1

Question Number	Acceptable Answers	Reject	Mark
4(a)(iii)	Water (as solvent for NaOH) / aqueous (NaOH) / aqueous (ethanol)	Aqueous silver nitrate	1

Question Number	Acceptable Answers	Reject	Mark
4(b)	Steamy / misty / white and fumes / gas (1)	White smoke	2
	IGNORE fizzing	Solid	
	$\begin{array}{c} CH_3CH_2CH(OH)CH_3 \ + \ PCI_5 \ \rightarrow CH_3CH_2CHCICH_3 \\ + \ HCI \ + \ POCI_3 \end{array} \qquad $	CH ₃ CH ₂ CH ₂ CH ₂ OH	
	ALLOW C ₄ H ₉ OH and C ₄ H ₉ Cl ALLOW PCI ₃ O	C₄H ₁₀ O	
	Accept displayed formulae ALLOW missing bracket in alcohol Stand alone marks		

Question Number	Acceptable Answers		Reject	Mark
4(c)(i)	With butan-2-ol: (change from orange) a green / blue	to (1)	Reference to gas given off or formation of precipitate	2
	With A: remains orange / no change ALLOW 'no reaction' Any reference to 'yellow': max 1	(1)	Green-blue Just 'nothing'	

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	CH ₃ CH ₂ COCH ₃ ALLOW displayed or skeletal		1

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	Absorption /peak /trough for O-H / C-O / OH bond / alcohol CO bond would disappear OR	Just - OH / CO Just 'alcohol peak'	1
	Absorption / peak / trough for C=O / CO ketone bond would appear	Just 'ketone peak'	