Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a) (i)}$	As a (co-)solvent for both aqueous silver nitrate and bromoalkane OR As a (co-)solvent for polar and non-polar molecules OR To dissolve the halogenoalkane (as it is not water soluble) OR To allow the reagents/reactants to mix/dissolve	(1)	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a) (i i)}$	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{HBr}$		(1)
	OR		
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{Br}^{-}$			
Ignore state symbols even if incorrect			

Question Number	Correct Answer		Reject	Mark
$\mathbf{1 (a) (\text { iii) }}$	Cream		Just "yellow" Just "white"	(2)
	ALLOW			
	Pale yellow/off-white			
	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{s})$	(1)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a) (i v)}$	solution) / Concentrated $\mathrm{NH}_{3}((\mathrm{aq}))$		(1)
I GNORE References	to "excess"		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a) (v)}$	C, B, A		$\mathbf{1}$
	NOTE The letters must be in this order		

Question Number	Correct Answer	Reject	Mark
* 1(a)(vi)	Any two from - Tertiary is the fastest / primary is the slowest - The $\mathrm{C}-\mathrm{Br}$ bond is weakest in 2-methylbromopropane / in the tertiary (compound) ALLOW here: The weaker the C-Br bond, the faster the hydrolysis - (This is because the) methyl groups donate electrons OR methyl groups are electron releasing OR (positive) inductive effect of methyl groups I GNORE Any resultant effect on the polarity of the $\mathrm{C}-\mathrm{Br}$ bond, even if incorrect - Tertiary carbocation OR intermediate formed by tertiary is (more) stable ALLOW branched for tertiary in all points I GNORE Any references to steric hindrance Any references to $\mathrm{S}_{\mathrm{N}} 1$ and/or $\mathrm{S}_{\mathrm{N}} 2$	If states that tertiary bromoalkane dissolves fastest	(2)

Question Number	Correct Answer	Reject	Mark
1(b)(i)	M1: All three of the following points - (Cotton) wool / mineral wool / ceramic fibre (soaked in reactant) - in a reasonably horizontal test tube - heating (shown anywhere under horizontal tube) M2: Collection of gas over water / in a gas syringe Ignore Bunsen valve Mark these scoring points independently		(2)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (b) (i i)}$	But-1-ene	Butene	(2)
	ALLOW	(1)	Butanene

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (c) (i)}$	(Type) substitution	(1)	Elimination
(Mechanism) nucleophilic	(2)		
	Allow words in either order		
Just " S_{N} 2" scores one mark	Electrophilic / (free) radical		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (c) (i i)}$	Butylamine/1-aminobutane/1-butylamine		$\mathbf{(1)}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i) ~}$	Ethanol dissolves silver nitrate / silver ions and halogenoalkanes OR Ethanol (molecule) is polar and non-polar (solvent) OR Ethanol dissolves ionic and covalent compounds	Ethanol is non- polar Just 'ethanol dissolves halogenoalkanes' ALLOW Ethanol dissolves ionic and non- polar compounds Ethanol dissolves both types (of compound) So that the reactants can mix 'miscible' for 'dissolves'	Just 'water does not dissolve halogenoalkanes'
IGNORE Any references to rate	Just 'they dissolve in ethanol'		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i i)}$	To allow the temperature (of all the liquids) to equilibrate / to reach $50^{\circ} \mathrm{C}$ OR So that all the substances are at the same temperature ALLOW So that the temperature is constant	1	

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	Silver bromide IGNORE Formula even if incorrect $\mathrm{Ag}^{+}+\mathrm{Br}^{-} \rightarrow$ AgBr TE on incorrect silver halide ALLOW Ionic equations with uncancelled ions Ag $^{+} \mathrm{Br}^{-}$as product IGNORE (1) state symbols even if incorrect	Non-ionic equations	2

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	Order: iodo, bromo, chloro ALLOW $\mathrm{AgI}, \mathrm{AgBr}, \mathrm{AgCl}$ OR I, Br, Cl OR Iodine, bromine, chlorine $\mathrm{C}-\mathrm{I}$ is the weakest bond OR I^{-}is best leaving group ALLOW (if MP1 awarded) Rate depends on the strength of the C-X bond IGNORE Explanations of the bond strengths, even if incorrect. References to bond length and atomic radius/size ALLOW Reverse argument for MP2	$\mathrm{I}_{2}, \mathrm{Br}_{2}, \mathrm{Cl}_{2}$ Rate depends on the reactivity of $\mathrm{X} / \mathrm{X}^{-}$	2

Question Number	Acceptable Answers	Reject	Mark	
2(b)(i)	nucleophilic substitution	(1)		2
	Stand alone marks	(1)		
	$S_{N} 2$ alone scores one mark		$S_{N} 1$	

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	Some comparison is required. Hydroxide ion $/ \mathrm{OH}^{-}$is a stronger nucleophile (than water) ALLOW OH^{-}is a better electron pair donor (than water) Concentration of hydroxide ion / OH^{-} is higher OR Hydroxide ion / OH^{-}is charged More hydroxide ion / OH^{-}in NaOH (than water) IGNORE OH^{-}is more basic / alkaline Alkali is a stronger nucleophile OH^{-}is more reactive ALLOW Reverse argument	Use of $\mathrm{NaOH} / \mathrm{OH}$ for OH^{-} Just ' $\mathrm{NaOH} /$ alkali forms OH^{-}more readily'	1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 2 \\ & \text { (b) (iii) } \end{aligned}$	Penalise omission of charge on hydroxide ion once only (in MP2) Both curly arrows First curly arrow from any part of the hydroxide ion (or the charge) to the carbon atom Second curly arrow from the $\mathrm{C}-\mathrm{Br}$ bond to the bromine atom or just beyond Second mark Lone pair on oxygen of $\mathrm{OH}^{-}\{\mathrm{HO}:\}$ Third mark Partial charge on $\mathrm{C}-\mathrm{Br}$ bond $\left\{\mathrm{C}^{\delta+}-\mathrm{Br}^{\delta-}\right\}$ ALLOW Correct $\mathrm{S}_{\mathrm{N}} 1$ mechanism for full marks Curly arrow from hydroxide group from any part of the group including the charge. IGNORE transition state (even if incorrect) products (even if incorrect)	OH with no / partial charge $\begin{equation*} \mathrm{C}^{+}-\mathrm{Br}^{-} \tag{1} \end{equation*}$	3

Question Number	Acceptable Answers	Reject	Mark
2(b)(iv)	PCl_{5} : misty /steamy / white fumes/gas IGNORE Tests on product (e.g. turns blue litmus red) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$: orange solution turns green ALLOW Orange to blue $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ preferred because PCl_{5} reacts with water (as well as alcohols) ALLOW $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ preferred because PCl_{5} reacts with alkali/ $\mathrm{OH}^{-} / \mathrm{OH}$ IGNORE References to primary, secondary and tertiary alcohols	smoke Just 'fumes'/ 'effervescence’ PCl_{5} reacts with carboxylic acids	3

Question Number	Acceptable Answers	Reject	Mark
3(a)	UV light/ ultraviolet light/ (sun) light / UV radiation IGNORE References to heat and or pressure.		1
Question Number	Acceptable Answers	Reject	Mark
3(b)	Species/ particle with unpaired electron Allow atom	Single electron	1
Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	$\mathrm{Cl}-\mathrm{Cl}$ bond is weaker than a $\mathrm{C}-\mathrm{H}$ bond / breaks more easily than a $\mathrm{C}-\mathrm{H}$ bond OR Reverse argument		1
Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	$\begin{align*} & \mathrm{CHCl}_{3}+\bullet \mathrm{Cl} \rightarrow \bullet \mathrm{CCl}_{3}+\mathrm{HCl} \tag{1}\\ & \bullet \mathrm{CCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\bullet \mathrm{Cl} \tag{1} \end{align*}$ Max (1) if 2 equations based on methane.		2
Question Number	Acceptable Answers	Reject	Mark
3(c)(iii)	$\bullet \mathrm{CCl}_{3}+\bullet \mathrm{Cl} \rightarrow \mathrm{CCl}_{4}$		1
Question Number	Acceptable Answers	Reject	Mark
3(d)	100% as only one product / 100% as no by product(s) / 100% as no waste product (formed)	J ust "atom economy is high(er)" / no mention of 100\%	1

$$
\text { Total = } 7 \text { marks }
$$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a) (i)}$	Alcohol /ethanol (as solvent for NaOH)	Any other reagents	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a) (i i)}$	Elimination		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a) (i i i)}$	Water (as solvent for NaOH) / aqueous $(\mathrm{NaOH}) /$ aqueous (ethanol)	Aqueous silver nitrate	1

Questio n Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 4 \\ & \text { (a) (iv) } \end{aligned}$	ALLOW Arrow from OH^{-}to appropriate C (connected / previously connected) to Cl Arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl producing Cl^{-} Accept three dimensional diagrams ; displayed formulae; $\mathrm{CH}_{3} \mathrm{CH}_{2}$ for $\mathrm{C}_{2} \mathrm{H}_{5}$ Use of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ as formula can score 1 for arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl Lone pair on hydroxide ion need not be shown ALLOW solid lines instead of dotted lines in the transition state	OH without charge Cl° (chlorine radical)	2

Question Number	Acceptable Answers	Reject	Mark
4(b)	Steamy / misty / white and fumes / gas IGNORE fizzing $\begin{align*} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{PCl}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3} \\ & +\mathrm{HCl}+\mathrm{POCl}_{3} \tag{1} \end{align*}$ ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ and $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ ALLOW $\mathrm{PCl}_{3} \mathrm{O}$ Accept displayed formulae ALLOW missing bracket in alcohol Stand alone marks	White smoke Solid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	2

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	With butan-2-ol: (change from orange) to green / blue	Reference to gas given off or formation of precipitate	$\mathbf{2}$
	With A: remains orange / no change (1) ALLOW 'no reaction' Green-blue Any reference to 'yellow': max 1	Just 'nothing'	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (c) (i i)}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ ALLOW displayed or skeletal		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	Absorption /peak /trough for O-H / C-O / OH bond / alcohol CO bond would disappear OR	Just - OH / CO Just 'alcohol peak'	$\mathbf{1}$
	Absorption / peak / trough for C=O / CO ketone bond would appear	Just 'ketone peak'	

